Lecture 8

Polymers and Gels

Variety of polymeric materials

- Polymer molecule made by repeating of covalently joint units.
- "Living polymers" (not considered in this lecture) long-chain objects connected by physical forces e.g. giant worm-like micelles, actin filaments etc.
- Many of physical properties of polymers have universal characteristic related to generic properties of long string-like molecules

Variety of polymeric materials

 Polymers are predominantly based on carbons though often contain other elements in the chain and sometimes don't involve carbon at all.

Polymethyl methacrylate

$$\begin{array}{c}
CH_{3} \\
CH_{2}-C \\
C=O \\
N \\
O CH_{3}
\end{array}$$
PMMA or Perspex (ICI trade name)

Polydimethyl siloxane

$$\begin{array}{c} \text{CH}_3 \\ -\text{Si} - \text{O} \\ \text{CH}_3 \end{array} \begin{array}{c} \text{CH}_3 \\ \text{Si} - \text{O} - \text{Si} - \text{O} - \text{Silicone oil} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \end{array}$$

Nylon 6-10

$$\begin{pmatrix} HH & & & \\ & | & & | & \\ -N-(CH_2)_6-N-C-(CH_2)_8-C & & \\ & | & | & \\ O & & O \end{pmatrix}_{N}$$

Amylose

Poly(di-octyl fluorene)

Stereochemistry of polymers

 If polymer has more than one type of side groups different arrangement are possible

 Atactic arrangement involves quenched disorder and therefore prevents crystallization: polymer will form glass at low temperature

Architecture of polymers

quenched disorder

- linear or branched
- average number of units in the chain: degree of polymerization N or molecular mass M
- distribution of lengths: polydispersity
- formed of the same units:
 homopolymers or several types of units:
 copolymers quenched disorder strictl
- copolymers: random, sequenced copolymers (DNA, proteins), block
 copolymers (units arranged in blocks microphase separation with complex

strictly prescribed sequence leading to self-assembly

microphase separation with complex morphologies

Block copolymers in nanotechnology

- polymers where repeat units come in blocks:
 - AB di-block copolymers

ABA tri-block copolymers

- can be combination of different polymers, e.g. amorphous (rubbery) and crystalline (hard)
- If units are very different chemically they will pahse separate. This microphase separation leads to a zoo of possible structures

Thermally Reversible

Phase diagram of a block copolymer

 The structures formed depend on the relative length of blocks and compatibility of polymers

Structure of block copolymers

 AFM of a triblock copolymer Kraton D-1102 (van Dijk and van der Berg, 1996)

Nanopatterning with block copolymers

 provides cheap way to produce nanostructures, e.g. for magnetic storage

Creating nanodots

J.Y. Cheng, C.A. Ross, V.Z.H. Chan, E.L. Thomas, R.G.H. Lammertink, G.J. Vancso, Adv. Mater. 13, 1174–1178 (2001)

Pluronics[™] copolymers for drug delivery

 Symmetrical hydrophobically associating triblock copolymers, Poly(propylene oxide) and poly(ethylene oxide)

$$CH_3$$

 $|$
 HO — $(CH_2$ - CH_2 - $O)_n$ — $(CH_2$ - CH_2 - $O)_m$ — $(CH_2$ - CH_2 - $O)_n$ — H

Pluronic L64[™]

Pluronics copolymers

- Poly(propylen oxide)
 - Central hydrophobic core
 - Folds in aqueous solution
 - CH₃ groups interact by Van der Waals
 - Binds hydrophobic proteins
- Poly(ethylen oxide)
 - Hydrophilic
 - Soluble in water
 - Hydrogen bonding interaction
 - More PEO in Pluronic[®], easier to dissolve

Protein

- Moves freely in aqueous solution
- High entropy → low protein adsorption

Drug encapsulation by Pluronics

- Form after passing critical micelle concentration (CMC) or critical micelle temperature (CMT)
- Suspensions can encapsulate drugs

Physical state of polymers

- Liquid: often very viscous with particular viscoelastic properties
- Glass: very common due to quenched disorder
- Crystalline: often semi-crystalline: micro crystallites in amorphous matrix
- Liquid crystalline: can be formed in a case of rigid molecules, e.g. Kevlar

Kevlar

- Kevlar aromatic polyamide
- chemically inert, mechanically strong, no degradation at low temperatures (down to -196 °C)

Random walk and polymer chain

- freely joint chain polymer model equivalent of random work
 - end-to-end distance $\vec{r} = \sum_{i=1}^{N} \vec{a_i}$

$$\vec{r} = \sum_{i=1}^{N} \vec{a_i}$$

mean square end-to-end distance

$$\left\langle \overrightarrow{r} \cdot \overrightarrow{r} \right\rangle = \left\langle \left(\sum_{i=1}^{N} \overrightarrow{a_i} \right) \cdot \left(\sum_{j=1}^{N} \overrightarrow{a_j} \right) \right\rangle = \left\langle \sum_{i=1}^{N} \sum_{j=1}^{N} \overrightarrow{a_i} \cdot \overrightarrow{a_j} \right\rangle$$

$$\left\langle \overrightarrow{r^2} \right\rangle = Na^2 + \left\langle \sum_{i \neq j}^N \overrightarrow{a_i} \cdot \overrightarrow{a_j} \right\rangle$$

0, as different links are uncorrelated

Entropy of a polymer chain

 Entropy of a macrostate is related to the number of available microstates (statistical weight):

$$S = k_B \ln \Omega$$

Entropy of a polymer chain

In a case of 1D walk:
$$R_x = (N_+ - N_-)a_x$$
; $\Omega_x = \frac{N!}{N_+! N_-!}$

$$\ln x! = x \ln x - x; \ \ln \Omega_x = -N [f \ln f + (1-f) \ln(1-f)], \ f = N_+/N$$

 function has a maximum at f=1/2, let's make Taylor expansion around the maximum:

$$\ln \Omega_x = \ln \Omega_x (1/2) + (1/2 - f) \left(\frac{d \ln \Omega_x}{df} \right)_{f = 1/2} + \frac{1}{2} (1/2 - f)^2 \left(\frac{d^2 \ln \Omega_x}{df^2} \right)_{f = 1/2} + \dots$$

$$\ln \Omega_x \approx N \ln 2 - 2N (1/2 - f)^2; \quad \ln \Omega_x \approx -\frac{R_x^2}{2Na_x^2}$$

- in 3D:
$$\ln \Omega = \ln \Omega_x \Omega_y \Omega_z \approx -\frac{3R^2}{2Na^2}$$

Entropy of a polymer chain

 Configurational entropy of a freely joint polymer chain:

$$S(r) \approx -\frac{3k_B R_x^2}{2Na_x^2} + const$$

Gibbs energy

$$\Delta G = -T\Delta S = \frac{3k_B T R_x^2}{2Na_x^2}$$

$$F = \frac{3k_B T}{Na_x^2} r$$
Entropic force, quite small

Stretching a DNA

 Dario Anselmetti et al, "Single Molecule DNA Biophysics with Atomic Force Microscopy", SingleMolecules, 2001

More realistic model: short range correlations

 realistically, correlation will not disappear for nearest neighbors due to e.g. bond angle

$$\langle \overrightarrow{a_i} \cdot \overrightarrow{a_{i-1}} \rangle = a^2 \cos \theta; \langle \overrightarrow{a_i} \cdot \overrightarrow{a_{i-m}} \rangle = a^2 (\cos \theta)^m$$

the chain will behave as its subunits are effectively longer

$$\left\langle \vec{r}^{\,2} \right\rangle = \frac{N}{g} \left\langle c^{\,2} \right\rangle = Nb^{\,2}$$

correlations can be characterized by characteristic ratio

$$C_{\infty} = \frac{b^2}{a^2}$$

Excluded volume: Flory's approach

- Consider a molecule that occupies volume r³:
 - segment concentration: $c \approx \frac{N}{r^3}$
- This leads to reduction of entropy: $\Delta G = \frac{k_B v N}{V} T = \frac{k_B v N^2}{2r^3} T$
- Total energy including configurational energy:

$$\Delta G = \Delta G_{rep} + \Delta G_{el} = \frac{k_B T r^2}{Na^2} + \frac{k_B T v N^2}{2r^3}$$

assuming excluded volume v ~ a³
 and minimizing energy:

$$r \sim aN^{3/5}$$

Interaction between polymer segments

Number of contacts for a polymer molecule:

$$N_{pp} = \frac{1}{2}zNvc; \ N_{ps} = zNv(1-c); \ N_{ss} = N_{ss}^{0} - \frac{1}{2}zNvc - zNv(1-c)$$

z – number of neighbors for any polymer segment or solvent molecule

The interaction energy:

$$U_{\text{int}} = \frac{1}{2} z N v c (\varepsilon_{pp} + \varepsilon_{ss} - 2\varepsilon_{ps}) + z N (\varepsilon_{ps} + \varepsilon_{ss}) + N_{ss}^{0} \varepsilon_{ss}$$

$$U_{\text{int}} = k_B T \chi 2v \frac{N^2}{2r^3} + const; \quad k_B T \chi = \frac{1}{2} z (\varepsilon_{pp} + \varepsilon_{ss} - 2\varepsilon_{ps})$$

The total energy:

$$G_{rep} + U_{int} = k_B T v (1 - 2\chi) \frac{N^2}{2r^3} + const;$$

Interaction between polymer segments

The total energy:

$$G_{rep} + U_{int} = k_B T v (1 - 2\chi) \frac{N^2}{2r^3} + const;$$

- We expect different behavior according to value χ:
 - 1. $\chi < 1/2$ polymer chain is expanded (swollen) good solvent behavior
 - 2. $\chi = 1/2$ repulsive effects are cancelled by attractive effects of polymersolvent interaction. Polymer behaves as ideal random walk: theta condition
 - 3. $\chi > 1/2$ attractive effect prevail, polymer forms a globule
- e.g. change in temperature could induce coil-globule transition

Flory theorem

 In the polymer melt, chains follow random walk statistics (in other words, upon increasing polymer concentration the effects related to excluded volume disappear).

Polymers grated on a surface

The case of polymer densely grafted on the surface: "polymer brush" with the density of σ/a² chains per unit area and height h.

$$\Delta G_{el} = k_B T \frac{r^2}{Na^2} = k_B T \frac{h^2}{Na^2}$$

$$\Delta G_{rep} + \Delta U_{int} = k_B T b (1 - 2\chi) \frac{\sigma N^2}{2ha^2}$$

minimizing total energy:

$$h \sim \left[\sigma b(1-2\chi)\right]^{1/3} N$$

Gels and gelation

- Gel material where subunits can bond to each other forming a network
- Gelation or sol-gel transition formation of a material with non-zero shear modulus
- Gels
 - chemical
 - termosetting resins (e.g. epoxy)
 - sol-gel glasses (silane polymerisation)
 - physical
 - via microcrystalline regions
 - via microphase separation

Theory of gelation

Gelation occurs when an infinitely size cluster is formed

Gelation theory: Flory-Stockmayer model

 If the probability to form a bond is f and each point can connect to z other points, each monomer in n-th generation is linked to f(z-1) monomers in (n+1)th generation. The total number of bonds in n- generation:

$$N \sim [f(z-1)]^n$$

So, there is critical probability f_cpercolation threshold:

Gelation theory: Flory-Stockmayer model

Branch

Neighbour

 Now, we can calculate the number of bonds inside an infinite cluster ("gel fraction")

- Let's suppose that
 the probability for a site to be connected to infinite
 cluster is P.
 the probability that the site is not connected via
 particular branch is Q
- The probability that a neighbour is not connected to the infinite cluster is $Q^{(z-1)}$ $Q = (1-f) + fQ^{z-1}$

$$Q = 1 \quad or \quad Q = \frac{1 - f}{f}$$

- On the other hand,
 - the probability that a site is not connected to infinity is Q^z.
 - probability to be connected to a particular neighbour but not to infinity fQ^z.

$$f - P = fQ^z$$
; $\frac{P}{f} = 1 - \left(\frac{1 - f}{f}\right)^3$ for $f > f_c$ or otherwise $\frac{P}{f} = 0$

Gelation theory: Flory-Stockmayer model

around the gelation point:

$$\frac{P}{f} = 3(f - f_c) + O(f - f_c)^2$$

generally

$$\frac{P}{f} \sim (f - f_c)^{\beta}$$

 β =1 in Flory-Stockmayer theory β =0.41 from MC modelling

